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Figure 4. Precipitation case of IMERG (a) and the best k-scale UM (b) on 2" Feb
2020. Dashed boxes show the area selected to check moisture biases, and solid
lines show areas where precipitation anomalies are above the 95th percentile
at that time. The shade represents precipitation amplitude, unit is mm/day.
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Figure 1. MJO RMM Index during DYAMOND Period
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Figure 6. Vertical moisture flux (VMF) of ERA5 (a) and k-scale UM (b) in the
dashed-line area. The meaning of the solid line is the same as in Figure 3.

In k-scale UM, the moisture
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Q Figure 7. Latitude-averaged specific humidity anomalies. The
meaning of the solid line is the same as in Figure 3.
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Figure 2. Hovmoller Diagram of Precipitation Field from IMERG (a)
and two sets of UM simulations (b-d) (f-h). The boundary conditions
of the two sets of simulation experiments are derived from the UM
global simulation using convective parameterisation (e in pink box)
and explicit convection (i in blue box), respectively.

(b) k-scale UM

The moisture in the lower troposphere does not show an obvious
moisture accumulation pattern to the east of the precipitation
centre before propagation in the k-scale UM.
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Dry bias in the lower troposphere
is significant in the MC but more
extended in the k-scale UM than in
global UM.
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The k-scale UM has significant moisture biases. During precipitation, water
vapour from high latitudes in the summer hemisphere is weaker than in
ERAS. The MJO propagation seems good despite the weak moisture
variation In the lower troposphere.
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Figure 3. Observed mean state (first row) and the anomalies of mean
state of the OLR (first column), u-wind (second column), and specific
humidity (last column)
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Highlights & Next Step

* Highlights: * Next Step:
* Under proper zonal wavenumber and period setting, 2D-FFT can » Clarify the correlation between precipitation and moisture
identify the MJO in short-term data (in this study, zonal wavenumbers - Analyse the cause of moisture biases by checking the apparent
are set as 1 to 4, and the frequency between 1/96 to 1/20). convective heat source (Q1) and the apparent moisture sink (Q2).
* The k-scale UM reproduces MJO propagation if and only if the » |dentify the contribution of moisture biases to MJO simulation.
boundary condition is from a global model with convective

* Understand MJO-related convective events whose thermodynamics are

parameterisation. primarily controlled by variability in moisture.

* The humidity variations in k-scale UM are much weaker than in ERAS. ;
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